

Schrödinger

Revolutionizing Medicines and Materials Discovery

Cautionary Note and Disclaimer

This presentation contains certain "forward-looking statements" within the meaning of the U.S. Private Securities Litigation Reform Act of 1995 that involve substantial risks and uncertainties. All statements, other than statements of historical fact, made by Schrödinger, Inc. ("we," "us," "our," "Schrödinger," or the "Company") contained in this presentation, including, without limitation, statements regarding the potential advantages of our computational platform, our financial outlook for the fiscal year ending December 31, 2025 and second quarter ending June 30, 2025, our research and development efforts for our proprietary drug discovery programs and our platform, our ability to improve and advance the science underlying our platform, including the ability to predict toxicity associated with binding to off-targets, our ability to improve drug discovery and the timing during which the predictive toxicology initiative's technology will become available to software customers and collaborators, the initiation, timing, progress, results, and reporting of data of our proprietary drug discovery programs and the drug discovery programs of our collaborators, the clinical potential and favorable properties of our molecules, including SGR-1505, SGR-2921, SGR-3515, and SGR-4174, and other compounds discovered with our platform and of our collaborators' product candidates, the potential of our collaborations to develop new therapies, our ability to realize returns on any of our investments in the companies we collaborate with, our plans to discover and develop product candidates and to maximize their commercial potential by advancing such product candidates ourselves or in collaboration with others, our plans to leverage the synergies between our businesses, our expectations regarding our ability to fund our operating expenses and capital expenditure requirements with our existing cash, cash equivalents, and marketable securities, and our expectations related to the key drivers of our performance, are forward-looking s

These forward-looking statements reflect our current views about our plans, intentions, expectations, strategies and prospects, which are based on the information currently available to us and on assumptions we have made. Actual results may differ materially from those described in the forward-looking statements and are subject to a variety of assumptions, uncertainties, risks and important factors that are beyond our control, including the demand for our software solutions, the reliance upon our third-party drug discovery collaborators, our ability to further develop our computational platform, the uncertainties inherent in drug development and commercialization, such as the conduct of research activities and the timing of and our ability to initiate and complete preclinical studies and clinical trials, whether results from preclinical studies and clinical trials will be predictive of the results of later preclinical studies and clinical trials, uncertainties associated with the regulatory review of clinical trials and applications for marketing approvals, factors adversely affecting the life sciences industry, and other risks detailed under the caption "Risk Factors" and elsewhere in our Securities and Exchange Commission ("SEC") filings and reports, including our Quarterly Report on Form 10-Q for the quarterly period ended March 31, 2025, filed with the SEC on May 7, 2025, as well as future filings and reports by us. Any forward-looking statements contained in this presentation speak only as of the date hereof. Except as required by law, we undertake no duty or obligation to update any forward-looking statements contained in this presentation as a result of new information, future events, changes in expectations or otherwise.

This presentation includes statistical and other industry and market data that we obtained from industry publications and research, surveys, and studies conducted by third parties as well as our own estimates of potential market opportunities. All of the market data used in this presentation involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such data. We have not independently verified such third-party data, and we undertake no obligation to update such data after the date of this presentation.

Highlights

1Q25 Financial Results

- \$59.6M total revenue
- \$48.8M software revenue
- \$10.7M drug discovery revenue

Phase 1 Data Readouts on Track

- SGR-1505 June 2025
 - EHA: June 12 15
 - ICML: June 17 21
- SGR-2921 2H 2025
- SGR-3515 2H 2025

2025 Guidance Highlights

- 10% 15% software growth
- \$45M \$50M drug discovery revenue
- Less than 5% operating expense growth
- 2Q software revenue of \$38 - \$42M

Pioneering Digital Chemistry

30+ years of innovation

~900 employees worldwide; >40% Ph.D.

>50% of employees dedicated to R&D

~1,752 customers, including top 20 innovative biopharma¹

Pipeline of 25+ collaborative and proprietary programs

Our Target-to-Clinic Digital Chemistry Laboratory

Target Validation

Hit Identification

Lead Optimization

Preclinical Development

Protein structure determination

Druggability assessment

Large-scale virtual screening

Fragment screening

Compound enumeration


In silico assays for:

- Potency
- Selectivity / Off-target toxicity
- Solubility
- Membrane permeability
- Brain exposure

Polymorph prediction

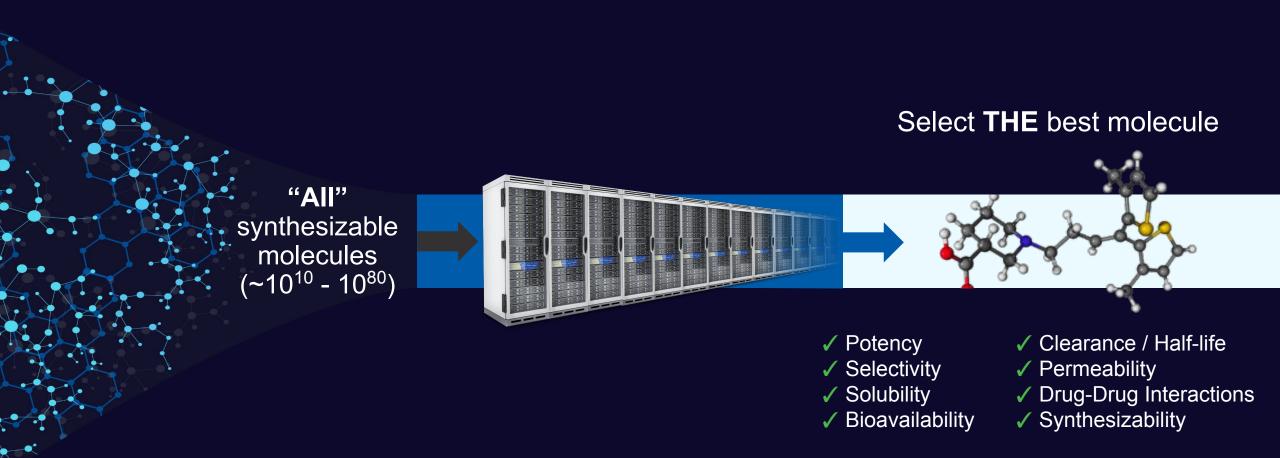
Drug formulation

Multi-Pronged Business Enabled by Highly Differentiated Computational Platform

¹ Active customers (# of customers who had an ACV >\$1,000) as of Dec. 31, 2024.

² Cumulative number of collaborators since 2018.

Our Computational Platform


Designing Drugs Is a Highly Challenging Multi-Parameter Optimization Problem

Need to identify a molecule that balances many anti-correlated properties:	70	70	ozo	o _t o	o _t o	ф. фф	
Potency	/	×	1	×	/	/	33%
Selectivity	×	1	/	/	×	/	success
Solubility	X	×	×		/	×	IND delivery
Bioavailability	X	×	×	×	X	×	66%
Clearance / Half-life	X	×	×	×	X	×	failure
Permeability	X	×	×	×	X	×	
Drug-drug interactions	X	×	×	×	X	X	
Synthesizability	×	×	×	×	X	X	

Schrödinger's Vision for the Future of Drug Discovery

If all properties can be calculated with perfect accuracy, designing drugs would have a much **higher** success rate, be much **faster** and **cheaper**, and would produce much **higher-quality** molecules.

Digital Chemistry Laboratory Leverages Physics + Al

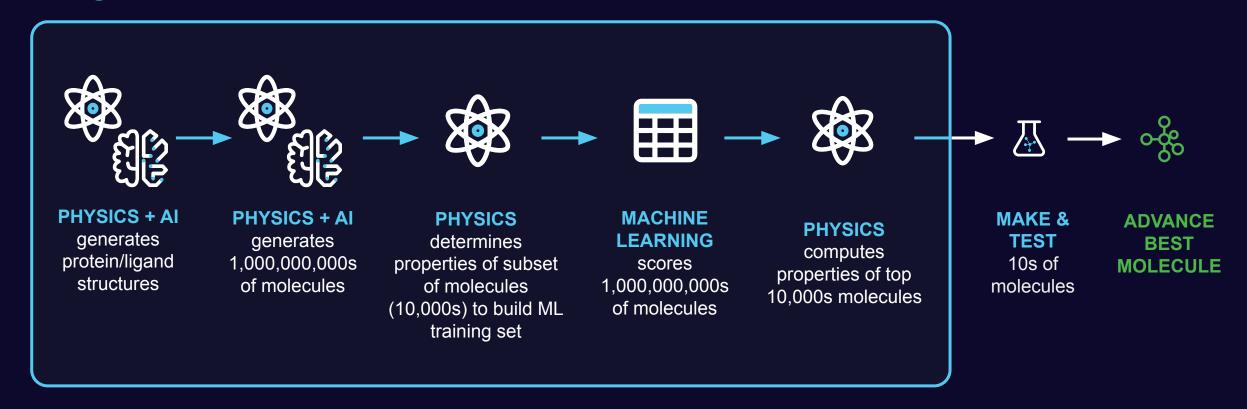
Physics-based Methods

- ✓ No training set required
- Can extrapolate into novel chemical space
- ✓ Accurate
- × Slow

Physics + AI/ML

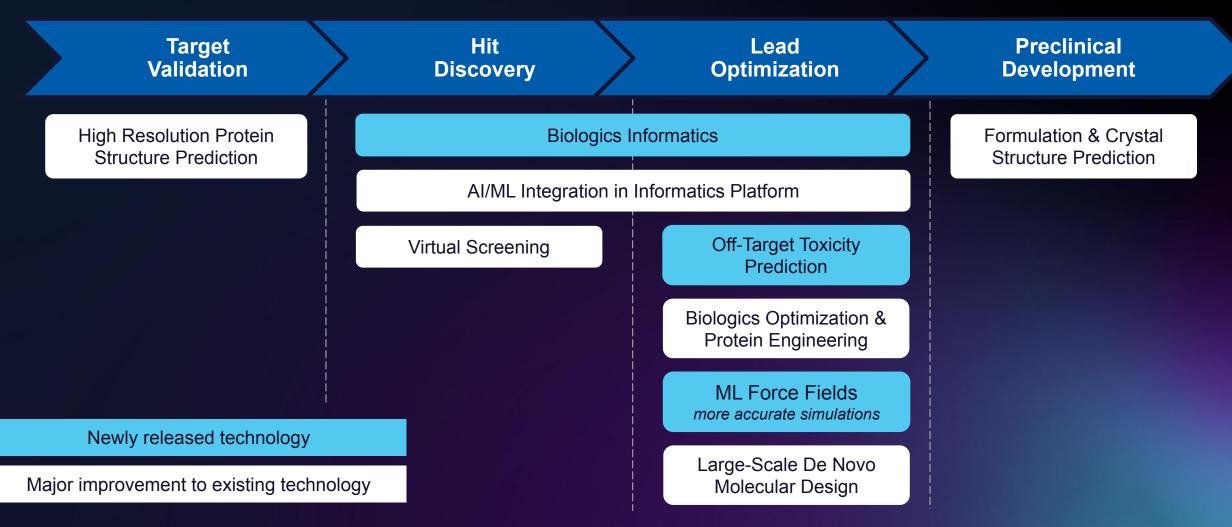

Training Set for AI/ML Generated Using Physics

- ✓ Fast
- ✓ Accurate
- ✓ Can handle very large datasets
- ✓ Can extrapolate into novel chemical space

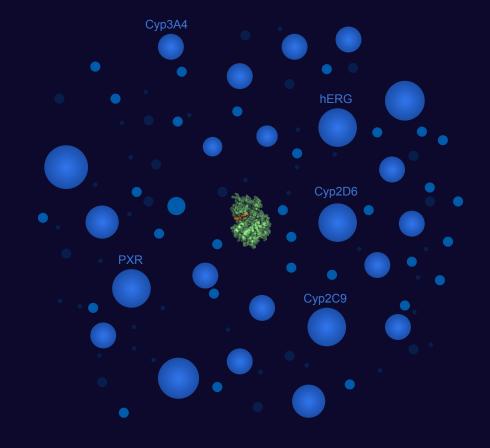


Artificial Intelligence / Machine Learning

- ✓ Effective at interpolation
- ✓ Fast
- ✓ Can handle very large datasets
- Requires massive training sets



Physics-Enabled AI/ML Platform


Advancing the Platform in 2025

Continuing to Integrate Physics & AI/ML

Schrödinger's Predictive Toxicology Initiative

- Predictive Toxicology Initiative: Develop structure-based computational assays for off-targets
- Predictive computational advantages:
 - Early de-risking
 - Faster ligand evaluation
 - Greater throughput
 - Lower cost
 - Improved safety profile
- Progress to date enabled:
 - hERG, Cyp3A4, Cyp2D6, Cyp2C9, PXR
 - − ~50 kinases

Gates Foundation

Committed \$19.5M grant

Provide enabling AI technologies

Our Therapeutics Pipeline

A Broad Portfolio of Advancing Collaboration Programs (1)(2)

Phase 3

Takeda

Psoriasis³

 \sim agios

TIBSOVO4 IDHIFA4

FDA-Approved

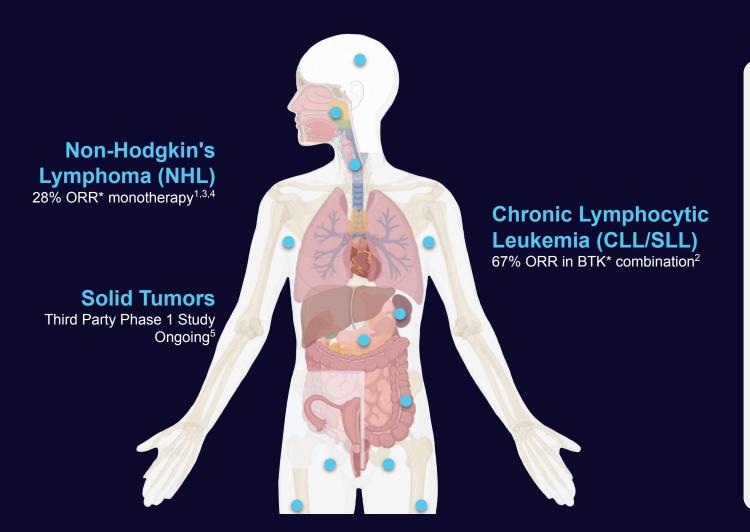
Additional programs in discovery and preclinical development with:

¹Based on publicly available information or information disclosed to us.


²All of the programs being pursued under these collaborations are owned and controlled by each respective collaborator.

³Acquired from Nimbus.

⁴Acquired by Servier.


⁵Acquired from Morphic.

Proprietary Pipeline Approaching Key Clinical Milestones

MALT1 Protease Inhibition Clinically Validated in 3rd Party Study

Allosteric Inhibition of MALT1

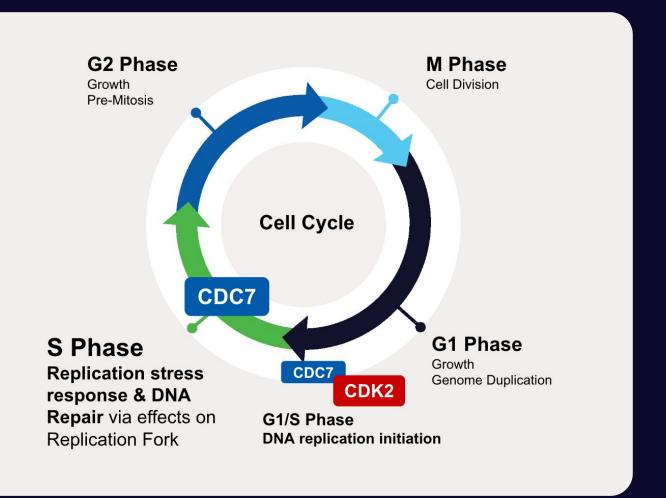
- Clinically validated by 3rd party MALT1 inhibitor showed monotherapy and combination activity in human B-cell malignancies
- Opportunity for well-tolerated, potent, optimized inhibitors in NHL and CLL
- Potential in autoimmune disease

*Definitions: ORR: overall response rate; BTK: Bruton tyrosine kinase.

SGR-1505 Status and Next Steps

Phase 1 healthy subject study completed

- SGR-1505 was generally well tolerated with no dose-limiting toxicities and no serious adverse events
- Favorable PK and evidence of target engagement


Phase 1 study in advanced R/R B-cell malignancies ongoing

- Primary objectives: Evaluate safety, PK, PD, RP2D*
- Secondary objective: Evaluate early signs of activity
- Initial clinical data presentation at EHA and ICML conferences in June

Future opportunities

- Combinations with standard of care agents
- Expansion in oncology and autoimmune disease

CDC7 Is an S-phase Kinase That Regulates DNA Replication and the Replication Stress Response

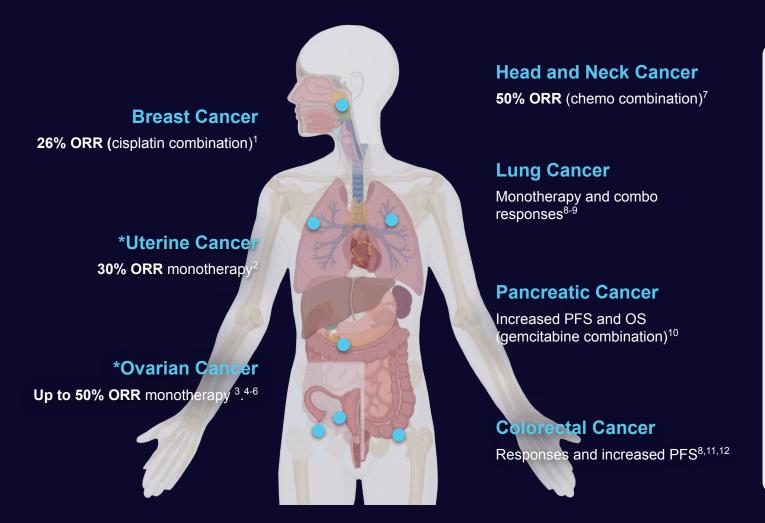
CDC7

- Maintains DNA replication fork progression, activates fork protection and restart mechanisms^{1,2}
- Activates BRCA1-A and Cohesin complexes¹
- Required for protection and restart of stalled replication forks^{1,3,4}

SGR-2921 Status and Next Steps

Strong preclinical rationale

- High replication stress in AML
- Potent and selective CDC7 inhibition shows strong anti-proliferative activity in AML samples, including those resistant to standard-of-care therapies


Phase 1 study in AML or MDS ongoing

- Primary objectives: Evaluate safety, tolerability and RP2D
- Secondary objectives: Evaluate PK, preliminary anti-tumor activity
- Initial clinical data presentation expected 2H 2025

Future opportunities

- Explore combination potential with existing and emerging agents
- Expansion opportunities in solid tumors

Wee1 Inhibition Clinically Validated in 3rd Party Studies

SGR-3515 Combines Wee1/Myt1 Activity

- Opportunity for improved therapeutic index
- Demonstrates durable activity from intermittent dosing in preclinical models¹³
- Myt1 activity offers opportunity to benefit from synthetic lethal relationship

SGR-3515 Status and Next Steps

Strong mechanistic rationale

- Clinically validated target
- Potential benefit in wide range of tumor types

Differentiated profile

- Potentially superior Wee1/Myt1 potency, improved selectivity and lower drug-drug interaction liability in preclinical models
- Profile enables optimized dosing schedule to maintain anti-tumor activity and limit hematological toxicity¹

Phase 1 study in advanced solid tumors ongoing

- Primary objectives: Evaluate safety, tolerability and RP2D
- Secondary objectives: Evaluate PK, preliminary anti-tumor activity
- Initial clinical data presentation expected 2H 2025

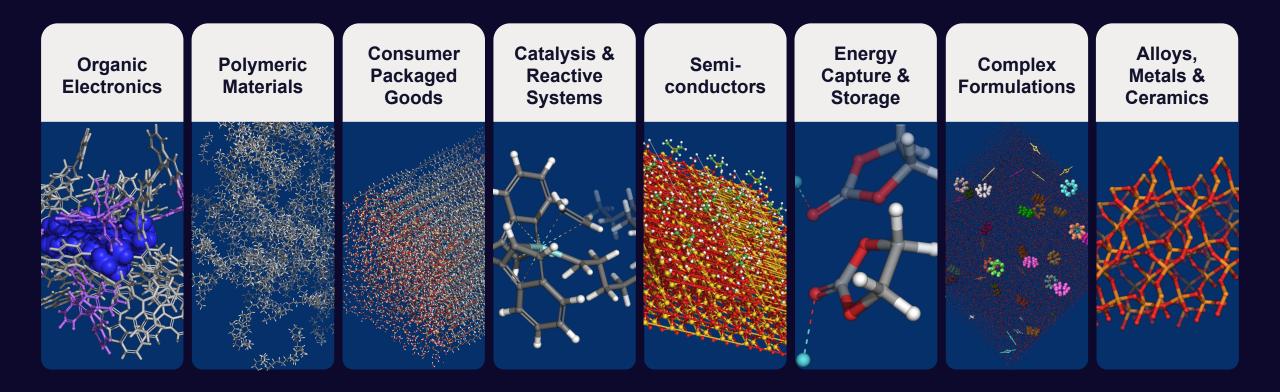
¹Sun et al., AACR 2022.

Materials Science

Leveraging Platform Synergies: Materials Science

- Materials Science business launched in 2012
- Leverages 30+ years of innovation in atomic-scale simulation solutions

Initial Collaborations: Next-Gen Batteries


- Developing atomistic simulations to improve battery performance
- Agreement renewed for a second three-year term in 2023

- Accelerating materials discovery and design for next gen Li-ion batteries
- 3-year collaboration

Platform Has Broad Application Across Industrial Materials Design and Development

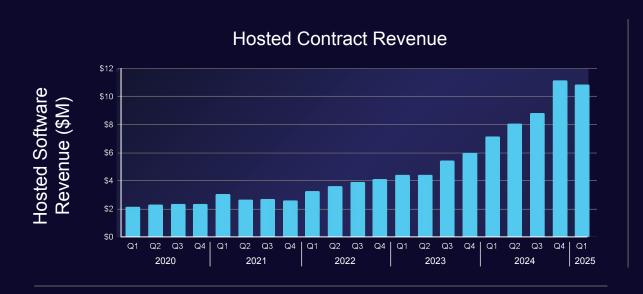
Tailored solutions designed to reduce cost, risk, and shorten timelines

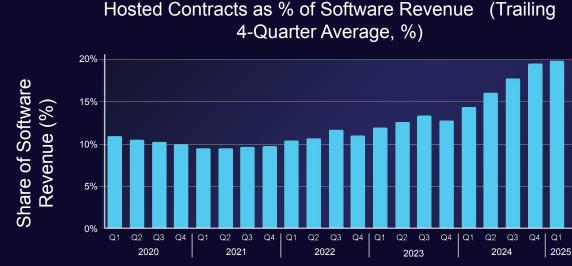
Financial Overview

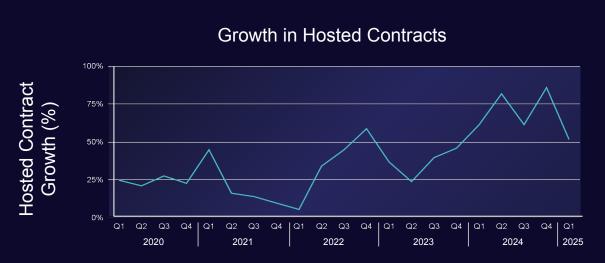
1Q25 Financial Highlights vs. 1Q24

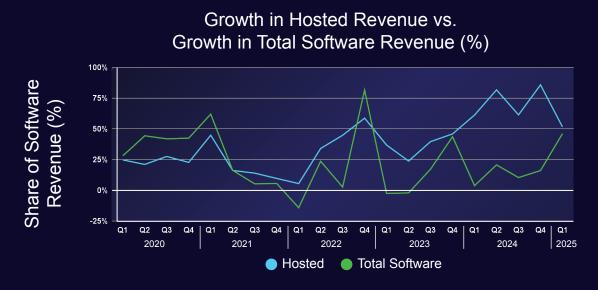
Three Months Ended March 31

	1Q 2024	1Q 2025	% Change		
Software revenue	\$33.4	\$48.8	46%		
Drug discovery revenue	\$3.2	\$10.7	237%		
Total revenue	\$36.6	\$59.6	63%		
Gross profit	\$18.9	\$31.1			
Software gross margin	76%	72%			
Operating expenses	\$86.3	\$82.0	(5.0%)		
Other (expense)/income	\$13.2	(\$8.9)			
Net loss	(\$54.7)	(\$59.8)			
	as of 3/31/24	as of 3/31/25			
Cash and marketable securities	\$435.7	\$512.1	18%		
Deferred revenue, current and long term	\$57.5	\$210.0	265%		
•——— (in millions)					

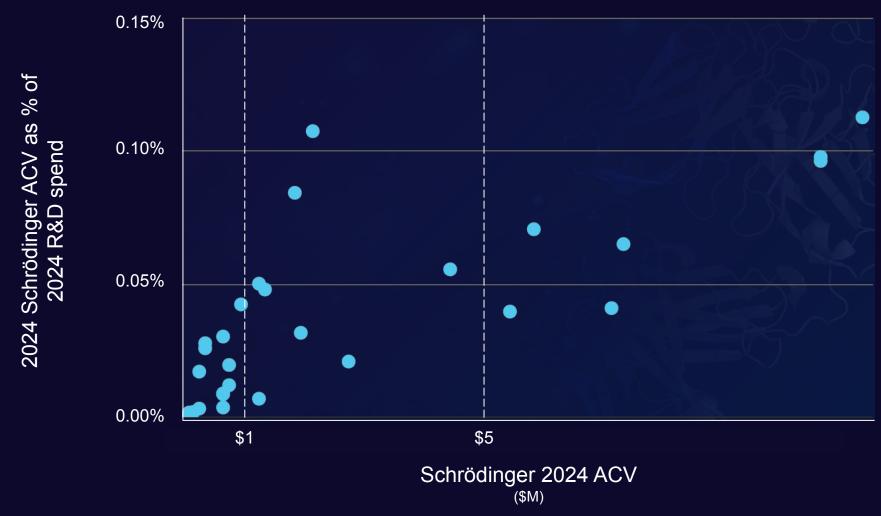



Four-Quarter Trailing Average Software Quarterly Revenue Trend



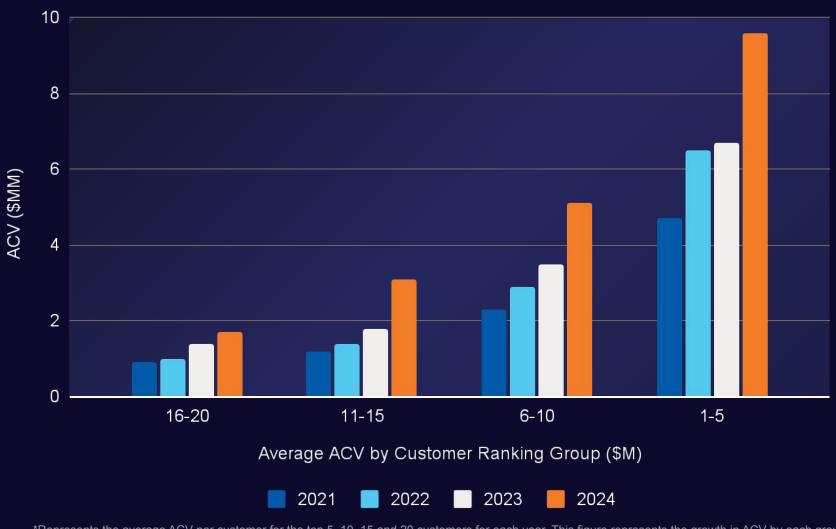


Hosted Contracts Are a Growing Share of Total Software Revenue

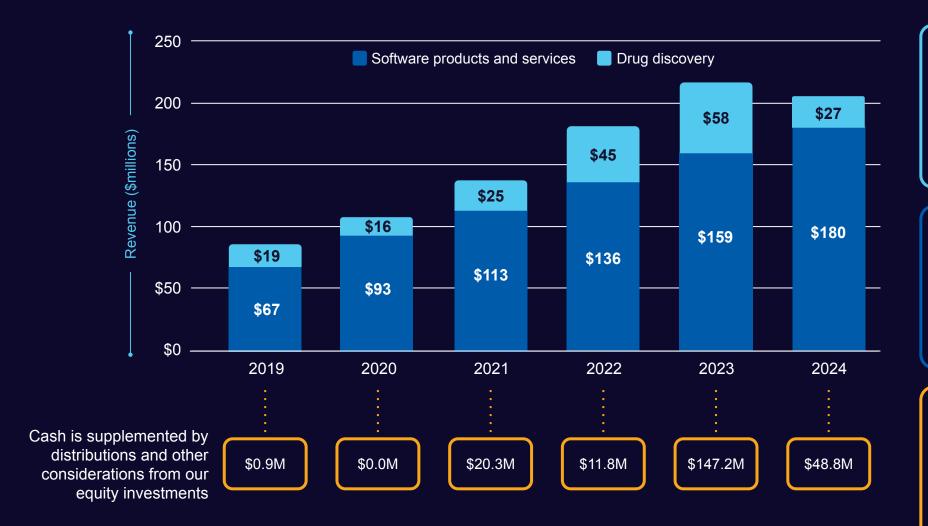


Full Year 2024 Key Performance Indicators (KPIs)

Software KPI	2023	2024
Total annual contract value (ACV)	\$154.2M	\$190.8M
ACV of Top 10 Customers	\$51.0M	\$73.1M
Number of customers with ACV ≥\$5M	4	8
Number of customers with ACV ≥\$1M	27	31
Number of customers with ACV ≥\$500k	54	61
Number of customers with ACV ≥\$100k	222	235
Customer retention rate with ACV ≥\$500k	98%	100%
Customer retention rate with ACV ≥\$100k	92%	95%
Number of customers with ACV ≥\$1k	1,785	1,752
Drug Discovery KPI	As of 12/31/23	As of 12/31/24
Ongoing programs eligible for royalties	12	13
Number of collaborators since 2018	17	19



Continued Opportunity for Growth and Adoption within Large Biopharma*



Growth in Top 20 Customer Average ACV By Customer Ranking Group Over Time

Software and Drug Discovery Revenues: 2019-2024

Drug discovery

2019-24 CAGR 7.6%

Software

2019-24 CAGR 22.0%

Equity investments

\$229M distributed or received since 2019

Capital Allocation Strategy Built on Proprietary Insights and Competitive Advantages in Computational Chemistry

Aiming to Generate Positive Returns from Deployment of Technology, Expertise and Capital

Opportunities that leverage:

Validated Target or Development Goal

- Academia
- Entrepreneurs
- Investors
- Industry

Computation

at Scale

Schrödinger

Proprietary

Technology

Schrödinger Scientific Team Unique Scientific Insight or Observation

Commercially Useful Innovation

- Proprietary Asset
- Venture / NewCo
- License IP / Program

2025 Financial Guidance

(As of May 7, 2025)

	2024 Actual	2025 Guidance
Software revenue	\$180.4	+10% – 15%
Drug discovery revenue	\$27.2	\$45 – \$50
Software gross margin	80%	74% – 75%
Operating expense growth	7.3%	Less than 5%
Cash used in operating activities	\$157.4	Lower than 2024

• (in millions)

For the second quarter of 2025, software revenue is expected to range from \$38 million to \$42 million.

Strategic Priorities

- Increase customer adoption of computational technology
- Deliver planned major enhancements to the platform
- Present initial clinical data from the Phase 1 study of SGR-1505 in June 2025
- Present initial clinical data from the Phase 1 study of SGR-2921 in 2H 2025
- Present initial clinical data from the Phase 1 study of SGR-3515 in 2H 2025
- Advance proprietary and collaborative discovery portfolio

Schrödinger

Revolutionizing
Medicines and
Materials Discovery

Appendix

Annual Contract Value (ACV). With respect to contracts that have a duration of one year or less, or contracts of more than one year in duration that are billed annually, ACV is defined as the contract value billed during the applicable period. For contracts with a duration of more than one year that are billed upfront, ACV in each period represents the total billed contract value divided by the term. ACV should be viewed independently of revenue and does not represent revenue calculated in accordance with GAAP on an annualized basis, as it is an operating metric that can be impacted by contract execution start and end dates and renewal rates. ACV is not intended to be a replacement for, or forecast of, revenue.

Customer Retention for our customers with an ACV of at least \$100,000 or \$500,000. We calculate year-over-year customer retention for our customers in this cohort by starting with the number of such customers we had in the previous fiscal year. We then calculate how many of these customers were active customers in the current fiscal year. We then divide this number by the number of customers with an ACV of at least \$100,000 or \$500,000, as applicable, that Schrödinger had in the previous fiscal year to arrive at the year-over-year customer retention rate for such customers.

