

The Orbital Economy Is Scaling Fast - A Clear Near-Term Catalyst for Rising Helium Demand

Insatiable demand for technological advancement on Earth is accelerating the emergence of a fully fledged orbital economy, with modern space powers rapidly evolving toward repeatable, affordable, industrial-scale launch cadence.

Developments across the United States and China highlight the speed of this transition and its growing implications for helium demand on Earth. This month's announcement of a large, defence-focused satellite constellation developed through [collaboration between the U.S. Space Force and SpaceX](#) underscores how orbital infrastructure is now viewed as critical national architecture. In parallel, [commercial operators are advancing vast satellite networks to deliver next-generation broadband and data services](#), with satellite counts expected to reach the tens of thousands over the coming decade.

Many elements of the orbital economy build-out depend on helium. Launch vehicles rely on helium to pressurise fuel tanks, purge propulsion systems, and manage cryogenic environments, while satellite manufacturing and testing requires helium for leak detection and controlled cooling systems.

As launch cadence accelerates and satellite production moves toward assembly-line throughput, derived demand for helium is set to scale in parallel, emerging as a clear and near-term growth catalyst.

Crucially, the orbital economy is deeply intertwined with terrestrial electronics manufacturing. The ground stations, data-relay networks, and autonomous systems required to support orbital assets rely on advanced semiconductors and photonics, with helium playing a critical role across multiple stages of fabrication. As orbital infrastructure scales, the expansion of this Earth-based support layer further reinforces the structural growth profile for helium demand.

China's publicly stated research programs into humanoid robotics and autonomous orbital systems reinforce this trajectory. [Its push toward humanoid robotic astronauts and autonomous orbital systems](#) could signal a future where AI-enabled machines actively maintain, upgrade, and extend the life of orbital infrastructure. With launch costs to low-Earth orbit still in the order of ~US\$5,000 per kilogram, even on today's most efficient commercial platforms, asset longevity and in-space servicing become economically critical.

These technologies are expected to intensify demand for advanced chips, sensors, and precision manufacturing, further underscoring helium's role as a foundational industrial input.

For Pulsar Helium investors, positioning matters. Exposure to a jurisdictionally secure primary helium discovery, advanced within a transparent and low-risk regulatory framework, provides early alignment with a powerful convergence of megatrends spanning space infrastructure, AI, advanced electronics, and national security. As these industries scale, strengthening helium demand increasingly favours investors aligned early with upstream enablers and producers of mission-critical inputs, supporting a growth story that is only just beginning to unfold.

Pulsar Helium's shares trade on TSXV: PLSR | OTCQB: PSRHF | AIM: PLSR

www.pulsarhelium.com

Disclaimer

This article contains information based on current market conditions and publicly available data. It does not constitute financial advice, and investors should conduct their own due diligence before making any investment decisions.

Marc Farrington
PR & Partnerships
marc@pulsarhelium.com
#PLSRINSIGHTS
[Follow us on X](#)