

CDK9 inhibition enhances apoptosis of TP53 mutated AML when combined with standard chemotherapy

#1626

Background

- Outcomes for patients with TP53 mutated acute myeloid leukemia remain extremely poor with both chemotherapy alone and with the addition of stem cell transplantation.
- Inhibiting CDK9 is a strategy to trigger apoptosis downstream of p53, making mutated p53 less relevant.
- CDK9 is required for mRNA processing and elongation.
- CDK9 inhibition results in loss of short half-life proteins such as MCL-1, and survivin—molecules AML cells depend on.
- These proteins are downstream from p53, hence, CDK9 inhibition will target these proteins regardless of p53 status.
- inhibition of CDK9 causes stalling of RNAPII, • The transcriptional arrest, and loss of short half-life proteins leading to DNA damage and apoptosis.
- Dinaciclib and SLS009 are potent CDK9 inhibitors.

Aims

- Establish optimal conditions, doses, and exposure times of CDK9 inhibitors and other chemotherapy agents, which lead to apoptosis of TP53 mutated AML cell lines.
- Determine an optimal chemotherapy regimen for CDK9 inhibitors with additional agents for an in vivo study.
- Examine the synergistic effects of CDK9 inhibition with standard chemotherapy agents.

Figure 3. THP1 cells were treated with azacitidine, venetoclax, and dinaciclib or SLS009 for 8-hours. Cell Titer-Glo was used to measure cell viability after 72-hours. (A) Triple-drug therapy with azacitidine, venetoclax, and dinaciclib results in high cytotoxicity in the p53 mutated THP1 cell line. (B) Triple-drug therapy with azacitidine, venetoclax, and SLS009 results in high cytotoxicity in the p53 mutated THP1 cell line. (C) Triple-drug therapy with azacitidine, venetoclax, and dinaciclib results in low cytotoxicity in the normal peripheral blood mononuclear cells (PBMC's).

Contact

Philip C. Amrein, M.D. amrein.philip@mgh.harvard.edu

Elizabeth C. Trull etrull@mgh.harvard.edu Elizabeth C. Trull, B.S.¹; David B. Sykes, M.D. Ph.D.¹; Philip C. Amrein, M.D.¹ ¹Cancer Center, Massachusetts General Hospital, Boston, MA

Figure 2. THP1 cells were treated for 72-hours to establish IC50's. Cell viability was measured using Cell **Titer-Glo.** Treatment of THP1 cells with azacitidine, venetoclax, dinaciclib and SLS009 demonstrates a dosedependent decrease in cell viability, with IC_{50} 's of 237 nM, 7158 nM, 6.3 nM, and 43.3 nM, respectively.

Triple-drug treatments decrease cell viability

S	SLS	50C)9															C. I	ÞΒ	M	С							
	0 nM	SLS0	09				20 nl	M SLS	009				40 n	M SLS	009				0 nM	Dina	ciclib				5 nM	Dinad	ciclib	
þ	94	88	93	94	94	20000	94	94	94	94	94	20000	94	94	95	95	95	20000	19	18	8	32	37	20000	9	15	51	22
D	78	84	88	95	95	8430	79	87	92	95	95	8430	95	96	96	96	96	8430	1	18	36	39	36	8430	16	10	12	41
þ	33	48	74	95	94	3560	37	44	73	95	95	3560	93	93	95	96	96	3560	4	6	5	9	20	3560	-13	-5	1	6
p	29	6	66	91	93	1500	38	13	60	94	94	1500	88	92	94	96	96	1500	26	30	8	40	49	1500	24	37	2	40
b	-7	11	23	71	92	0	-18	-12	54	88	93	0	27	38	65	95	95	(Mn)	-4	-4	5	-6	4	0	-28	38	-24	-10
L	0	20	106	535	3000		0	20	106	535	3000	1	0	20	106	535	3000	lax (0	20	106	535	3000	-	0	20	106	535
50 nM SL S009 70 nM SL S009 12 nM Dinaciclib 12 nM Dinacicl													aciclik	2														
5	95	95	95	95	94	20000	96	96	96	96	95							Ven 20000	37	37	22	36	34	20000	16	28	27	33
D	97	97	96	96	95	8430	97	97	97	96	96							8430	-5	-5	6	4	30	8430	3	2	27	14
D	96	97	96	96	95	3560	97	97	97	97	96							3560	-3	-12	2	3	17	3560	-30	10	-13	8
D	95	95	94	95	95	1500	96	97	96	96	96							1500	-6	31	-22	-11	-7	1500	-37	-28	18	6
D	67	76	82	94	93	о	89	92	93	94	95							0	-30	-42	-31	25	-8	0	-79	-60	-32	17
	0	20	106	535	3000		0	20	106	535	3000								0	20	106	535	3000		0	20	106	535
	Inh	ihiti	on						Aza	citid	ine (nM)														A		tidi
)		DICI																										
1	00	90	0	80	7	0	60	5	D	40	3	0	20	1	.0	0												

Acknowledgements

This project was financially supported through generous philanthropic donations. The authors would like to thank Sellas Life Sciences for providing SLS009 and for their general support.

3 nM Dinaciclik **38** 20000 **8 5 47 25 38 26** 8430 **4 4 21 4 21** 3560 -9 -8 9 40 13 17 1500 -24 -22 -17 27 10 25 -2 -40 -21 106 535

(-)Ctrl **SLS009**

Figure 5. THP1 cells exposed to 50 nM SLS009 for 8-hours undergo **PARP cleavage** in association with **loss** of both **MCL-1** and **survivin** expression.

- enhanced by CDK9 inhibition.

Pallis, M. et al. Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells. BMC Pharmacol. Toxicol. 14, 32 (2013) Martin, R. D., Hébert, T. E. & Tanny, J. C. Therapeutic Targeting of the General RNA Polymerase II Transcription Machinery. Int. J. Mol. Sci. 21, 3354 (2020). Aleksandr Ianevski, Anil K Giri, Tero Aittokallio, SynergyFinder 3.0: an interactive analysis and consensus interpretation of multi-drug synergies across multiple samples, Nucleic Acids Research. 50, W1, W739–W743 (2022).

Apoptotic proteins

Cleaved Caspase-3

Aza Ven	Dina	Aza/ Ven	Aza/ Dina	Ven/ Dina	AVD	(+)Ctrl
		VEII	Dilla	Dilla		

Figure 4. PARP cleavage and cleaved caspase-3 expression according to single-agent and combination treatments.

(A) Immunoblot of THP1 cells were exposed to 200 nM azacitidine, 6000 nM venetoclax, and 10 nM dinaciclib for 8-hours.

(B) Quantification of protein levels using fluorescence. Protein levels were normalized so the (-)ctrl is 0% and (+)ctrl is 100%.

(-)Ctrl

SLS009

Conclusions

 CDK9 inhibition results in cytotoxicity of TP53 mutated AML cells at low concentrations of dinaciclib and SLS009.

• CDK9 inhibition results in apoptosis associated with low

expression of short half-life molecules.

• Cytotoxicity of conventional chemotherapy agents is

• Testing triple therapy in a clinical trial is warranted.

References